
Frontiers in Immunology | www.frontiersin.

Edited by:
Karen Nelson,

J. Craig Venter Institute (La Jolla),
United States

Reviewed by:
Qixiao Zhai,

Jiangnan University, China
Bo Yang,

Jiangnan University, China

*Correspondence:
Kevin M. Byrd
byrdk@ada.org

Specialty section:
This article was submitted to

Microbial Immunology,
a section of the journal

Frontiers in Immunology

Received: 22 October 2020
Accepted: 05 January 2021

Published: 19 February 2021

Citation:
Byrd KM and Gulati AS (2021) The

“Gum–Gut” Axis in Inflammatory
Bowel Diseases: A Hypothesis-Driven
Review of Associations and Advances.

Front. Immunol. 12:620124.
doi: 10.3389/fimmu.2021.620124

REVIEW
published: 19 February 2021

doi: 10.3389/fimmu.2021.620124
The “Gum–Gut” Axis in
Inflammatory Bowel Diseases:
A Hypothesis-Driven Review of
Associations and Advances
Kevin M. Byrd1,2* and Ajay S. Gulati 3,4

1 Division of Oral & Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC,
United States, 2 Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD,
United States, 3 Division of Gastroenterology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel
Hill, NC, United States, 4 Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill,
Chapel Hill, NC, United States

In modern medicine, the oral cavity has often been viewed as a passive conduit to the
upper airways and gastrointestinal tract; however, its connection to the rest of the body
has been increasingly explored over the last 40 years. For several diseases, the
periodontium and gingiva are at the center of this oral-systemic link. Over 50 systemic
conditions have been specifically associated with gingival and periodontal inflammation,
including inflammatory bowel diseases (IBD), which have recently been elevated from
simple “associations” to elegant, mechanistic investigations. IBD and periodontitis have
been reported to impact each other’s progression via a bidirectional relationship whereby
chronic oral or intestinal inflammation can impact the other; however, the precise
mechanisms for how this occurs remain unclear. Classically, the etiology of gingival
inflammation (gingivitis) is oral microbial dysbiosis in the subgingival crevice that can lead
to destructive periodontal disease (periodontitis); however, the current understanding of
gingival involvement in IBD is that it may represent a separate disease entity from classical
gingivitis, arising from mechanisms related to systemic inflammatory activation of niche-
resident immune cells. Synthesizing available evidence, we hypothesize that once
established, IBD can be driven by microbiomial and inflammatory changes originating
specifically from the gingival niche through saliva, thereby worsening IBD outcomes and
thus perpetuating a vicious cycle. In this review, we introduce the concept of the “gum–gut
axis” as a framework for examining this reciprocal relationship between the periodontium
and the gastrointestinal tract. To support and explore this gum–gut axis, we 1) provide a
narrative review of historical studies reporting gingival and periodontal manifestations in
IBD, 2) describe the current understanding and advances for the gum–gut axis, and 3)
underscore the importance of collaborative treatment and research plans between oral
and GI practitioners to benefit this patient population.
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INTRODUCTION

A Bidirectional Influence of Oral
and Systemic Health
The oral cavity serves as the entry point to the gastrointestinal
tract and is also continuous with the nasal cavity and the skin of
the face (1). While it certainly functions as a conduit for the
movement of food, fluids, and air, this space has been revealed to
be a diverse collection of tissues that are harmoniously integrated
into the vital functions of communication, defense, feeding,
breathing, and early digestion (2–4). Diseases of these tissues
range from innocuous, seriously disabling, or even lethal. Indeed,
they were recognized as such by Hippocrates, who cataloged oral
diseases as part of—not separate from—the whole body (5, 6).
Despite this ancient perspective and recent efforts by healthcare
leaders to breakdown longstanding barriers, the concept of oral
medicine existing separate from general medicine persists (7–9).

While many pathologies are confined to the oral cavity itself,
there has been increasing exploration of the links between oral
diseases and systemic health. We and others hypothesize that this
is a bidirectional link, centered around the generalized influence
of chronic inflammation. Specifically, there exist several oral-
systemic axes in which inflammatory diseases of the oral cavity
can lead to dysbiosis, which then influences the systemic disease
course—and vice versa. For example, numerous systemic
diseases demonstrate manifestations in the oral cavity (Figure
1A). In particular, several nutritional deficiencies and systemic
diseases involving the skin, hematopoietic system, immune
system, endocrine system, connective tissues, lungs, liver,
kidneys, and the gastrointestinal tract are known to
demonstrate a diverse array of bony, glandular, connective
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tissue, and mucosal manifestations in the oral cavity (10, 11).
While the purpose of this review is not to catalog all known or
suspected oral-systemic axes, it is evident that these links are
likely underappreciated in both oral health care and in medicine.

The mechanistic underpinnings for each of these oral-
systemic axes are limited. The reasons for this are numerous,
but one important consideration is that they can present
unpredictably and are known to present in specific oral niches.
The soft tissues of the oral cavity are heterogeneous, comprised
of transitions between masticatory and lining mucosal tissues,
taste and tactile papillae on the dorsal tongue, major and minor
salivary glands, palatine and lingual tonsillar tissues, and the tooth
and its supporting periodontium—comprised of the periodontal
ligament, cementum, alveolar bone, and the gingiva (12). When
considering the involvement of systemic disease in the oral cavity,
the uniqueness of these oral tissues inadvertently predilects some
sites to be more or less likely to display the influence of systemic
effects. One of the best examples of this is in inflammatory bowel
diseases (IBD), which can present in nearly every niche, including
the lymph nodes, buccal mucosa (cheek lining), tongue, lips, teeth,
and periodontium (13). The most common oral manifestations of
IBD involve the buccal mucosa and the gingiva, both of which can
display severe, chronic inflammatory lesions. This is not
surprising, as the anatomy of the periodontium makes this a
susceptible site for frequent dysbiosis and chronic inflammation.

Among all oral niches, the periodontium has been the most often
explored as key to the oral-systemic link (14, 15), and the influence of
chronic inflammatory diseases of the periodontium (gingivitis and
periodontitis) on systemic healthy was formalized as the term
“periodontal medicine” to describe these gum-systemic links in the
1990s (16–20). To date, over 50 diseases have been associated with
A B

FIGURE 1 | A Bidirectional Influence of oral and systemic health. (A) Emerging associations between systemic disease on oral health include diseases of the skin,
lungs, gastrointestinal tract as well as endocrine and hematopoietic systems. (B) The number of systemic diseases impacted by oral inflammatory diseases of the
periodontium (gingivitis and periodontitis) continues to increase as more studies are conducted. Many of the same systems that influence oral health are influenced
by periodontal health.
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gingivitis/periodontitis (21), including atherosclerotic disease (22),
adverse pregnancy outcomes (23), type I and type II diabetes (24, 25),
metabolic syndrome (26), and inflammatory bowel diseases (Figure
1B) (27). The directionality and causality of these associations remain
to be elucidated, but recent mechanistic investigations into the oral-
systemic link in IBD have recently provide clues into the interworking
of this axis (28, 29). This review will focus on the periodontium as a
specialized tissue niche that not only displays involvement in IBD but
may also be able to seed those local changes to the distant gut to
exacerbate the course of IBD. Throughout this review, we will
synthesize what is known across many fields to provide support for
an emerging oral–gut link in IBD. However, we will emphasize the
idea of this phenomenon likely being uniquely associated with
gingival and periodontal inflammation and thus, we introduce the
concept of the “gum–gut axis” for the first time as a framework for
examining the reciprocal relationship between the periodontium and
the gastrointestinal tract (i.e., gut-to-gum influences and gum-to-gut
influences). To support and explore this emerging gum–gut axis, we
1) provide a narrative review of historical studies reporting gingival
and periodontal manifestations in IBD, 2) describe the current
understanding and advances for the gum–gut axis, and 3)
underscore the importance of collaborative treatment and research
plans between oral and GI scientists to benefit this patient population.
BACKGROUND

Periodontitis and Periodontal Disease
as a Manifestation of IBD
Currently, about 40% of all US adults older than 30 have some form
of periodontal disease (30), and ~11% of the world’s population is
currently diagnosed with a severe form of the disease (31).
Periodontal diseases are immune-mediated, chronic disorders of
the periodontium. Based on the 2017 World Workshop on the
Classification of Periodontal and Peri-Implant Diseases and
Conditions, diseases of these tooth-supporting tissues are now
classified into gingivitis, as well as three major periodontal disease
categories: (a) periodontitis, (b) necrotizing periodontal diseases,
and (c) periodontitis as a manifestation of systemic disease (32).
Periodontal diseases typically originate in the gingiva as
inflammation before causing progressive alveolar bone destruction
(33, 34). Over many years of work, it is known that gingivitis and
periodontitis are caused by a shift from a healthy to a dysbiotic
biofilm in the subgingival crevice or “pocket” (35, 36). Once
established, periodontal diseases display extensive disease
heterogeneity but are commonly defined by chronic and
destructive periodontal inflammation that can lead to loss of
tooth-supporting tissues and a lower quality of life (37). These
diseases are often diagnosed after 30 years old (38); however, it is
also important to note that severe gingivitis can occur at any age,
even in children.

Similarly, IBD represents a group of immune-mediated,
chronic inflammatory disorders of the gastrointestinal tract.
They are typically characterized into two primary disease types:
Crohn’s disease (CD) and ulcerative colitis (UC). Among these
diseases, there is signifcant heterogeneity within these subtypes,
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and many more IBD phenotypes likely exist than have been
defined. The incidence of IBD in the US and Europe has recently
stabilized (39, 40), yet the US still has about 25% of the world’s
cases when age-standardized metrics are utilized (40). Pediatric
IBD comprises about 25% of all cases, and these patients typically
have more aggressive disease, with up to 34% requiring surgery
within 10 years of diagnosis (41, 42). Modern twin studies
suggest the heritability of both CD and periodontitis is around
0.3, though slightly less for UC (43, 44). Both IBD and
periodontitis are actively being investigated for perturbations
of host genetics, the microbiome, environment, diet, and
inflammatory/immune cell subtypes as potentially explaining
disease progression (45, 46).

Gingival and Periodontal Manifestations
of IBD
While the extraintestinal manifestations of IBD may involve the
skin, eyes, and joints (47, 48), oral involvement can occur in up
to 50% of all cases. For pediatric IBD, oral manifestations— often
in the gingiva—may be present as high as 80%, with higher
prevalence in males and CD (49–52). Though reports vary, it has
been suggested that up to 25% of IBD cases present with oral
symptoms before any intestinal involvement (48, 53); that said,
the most frequently reported oral manifestations are the
appearance of “cobblestoning” and ulceration of the oral
mucosa (13) as well as chronic, severe inflammation of the
gingiva/periodontium (54). It is noteworthy that while IBD
patients commonly display severe gingival inflammation and
hypertrophy, lesions of the gingiva can also be subtle. For
example, mild inflammation of the gingival margin may
present as a subclinical lesion (marginal gingivitis) (55);
moreover, there is significant heterogeneity of gingival lesions
generally, despite controlling for similar patient demographics
(56). Even among trained providers, diagnosing gingival disease
can be challenging and time-consuming (49, 57, 58); thus, it is
likely that the prevalence of gingival manifestations of IBD at a
“person-level” is likely underreported. To explore the gum–gut
axis in IBD, it is imperative that we first explore the pathogenesis
of gingivitis and compare it to what is known about gingivitis
in IBD.

Classical Gingivitis vs IBD-Induced
Gingivitis
In health, gingivae appear pink in color, firm to palpation, and
occasionally stippled with no obvious pathology (i.e., bone
resorption; Figure 2) (59). Diseases of the gingiva are often
associated with inflammation of the gums/gingiva, and by
definition, involve only the soft tissues of the periodontal
attachment (60). Like periodontitis, it has been shown that
gingivitis is caused by local dysbiosis of the subgingival crevice
(i.e., in the subgingival microbiome) (61, 62); however, the
gingival inflammation observed in IBD patients does not
appear to follow this well-known pathogenesis in all cases.
Extracting from recent reports, it appears that gingival and
periodontal inflammation in IBD may not be biofilm-induced,
but rather, biofilm-exacerbated (27). This would establish a
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Byrd and Gulati Gum–Gut Axis in IBD
paradigm for the gum–gut axis whereby the treatment
modalities and understanding of the disease cascade may not
necessarily follow these classic studies and raises the possibility
that IBD-induced gingivitis could be a different disease entity
altogether. This requires further exploration.

In classical gingivitis (or simply “gingivitis” for this review),
inflammation of the gingival margin presents with erythema as
well as increases in the inflammatory infiltrate (63).
Understanding the differences between gingivitis and IBD-
induced gingivitis pathogenesis will be important but also
challenging. This is because gingivitis is simultaneously
reversible and increasingly prevalent as we age; ~1/3 of all 3-
year-olds, ~2/3 of 5-year-olds, and >90% of young adults have
gingivitis (64). Gingival and periodontal diseases can present
from to mild to severe, often historically classified as initial, early,
established, and advanced lesions (62). The “initial” lesion of
gingivitis is not detectable clinically but has been shown to occur
within 2–4 days after biofilm accumulation. This results in an
increase in gingival crevicular fluid flow, vasoactive compound
release, neutrophil migration into the gingival crevice, and finally
the release of effector cytokines to induce more inflammation
(59). Through progressive changes, the classical “early” lesion is
established within a week of biofilm accumulation and is defined
by an increased relative abundance of lymphocytes and
macrophages (65). While the response of the host tissues is
increasingly heterogeneous when examining individuals (66), the
more mature established gingival lesion is defined by a significant
increase in B and plasma cells (59).

In gingivitis, the subgingival microbiome undergoes a
measurable shift in taxa that elicit an immune response [see
Frontiers in Immunology | www.frontiersin.org 4
list in Figure 2; (67)]. While these species are found in the
subgingival microbiome, the host inflammatory response in
gingivitis is now thought to be a result of alterations to
microbiomial abundance, richness, and interspecies interaction
(67). While there is important person-to-person variation, the
result of sustained gingivitis in susceptible individuals is
periodontitis, often defined by an increased presence of
Porphyromonas gingivalis, Tannerella forsythia, Treponema
denticola, and Aggregatibacter actinomycetemcomitans (68).
While these concepts of microbiomial “ecology” are still being
explored in gingivitis, the similarities and differences for IBD-
induced gingivitis are only now emerging after years of case
reports and association studies.
THE HISTORY OF THE “GUM–GUT”
AXIS IN IBD

Classical Case Reports
Like periodontal diseases, the signs and symptoms of IBD have
been alluded to throughout human history. UC was first
described in case series from the late 19th century, and
separately, CD in 1932 (69, 70). Periodontal disease
classifications have been dynamically revised over the years
and multiple classifications have been proposed, starting as
early as the late 19th century; however, it was not until 1942
that a classification paradigm was based on the principles of
pathology detailed “gingivitis” or “periodontitis” (7, 71). As early
classifications of these diseases became better understood and
FIGURE 2 | Evidence for IBD-induced gingivitis as a separate disease entity. (Left) “Classically” defined gingivitis involves well-defined increases to pro-inflammatory
cytokines secondary to defined shifts in the microbiome. The inflammation clinically documented in IBD often discordant with biofilm deposits on the tooth surface,
suggesting a role for the systemic inflammation of IBD to cause oral inflammation in parallel with or independent of biofilm deposits. This inflammation may itself shift
the oral microbiome which then may cause further gingival inflammation. A sampling of the gingival crevicular fluid (GCF) and saliva (biofluids), gingival tissues (full-
thickness biopsies), and subgingival microbes (microbiome) allows for a detailed understanding of the inflammatory and microbiomial shifts shared and unique to
these possibly unique diseases.
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more widely disseminated, only then were studies of gingival and
periodontal manifestations in IBD even possible to conduct
(Figure 3).

Oral manifestations of IBD were first reported in the 1950s
and initially focused on aphthous ulceration (72), though many
reviews reference a description of oral granulomatous
inflammation from Dudeney and Todd in 1969 as the first
report of oral involvement in IBD (73). Over the following
decades, detailed case reports were published that highlighted
the diversity of oral manifestations in IBD, generally highlighting
the most severe lesions (74–77). For example, one early case
description detailed an account of a pediatric CD patient who
developed unilateral granulomatous inflammation in the buccal
mucosa 6 years after the initial diagnosis (73). Over the next few
years, similar case reports were published expanding these
observations of oral manifestations in IBD patients to soon
detail other sites such as the lips and the hard palate (75, 78, 79).

Among these studies, gingival and periodontal manifestations
of IBD were also reported in the literature, often including
patients presenting with severe gingivitis (73, 80, 81). In these
studies, similarities were noted between the pathogenesis of
periodontitis and IBD. The connection between IBD and
specific manifestations in the gingiva was documented around
the same time as other manifestations. For example, a case report
from 1972 detailed findings from a pediatric CD patient who
presented with gingival hyperplasia on the entire maxillary
anterior teeth (80). The tissues were described as 5–6 mm
“pseudopockets”, suggestive of a severe hyperplastic phenotype
that worsened periodically. While there was no bony
involvement—and therefore not truly periodontitis—this was a
unique manifestation of IBD and suggested that chronic, severe
gingivitis in IBD patients may itself undergo temporal
exacerbation and remission. As early as 1978, the first studies
suggesting severe periodontitis might be associated with IBD,
Frontiers in Immunology | www.frontiersin.org 5
which were published (82–84). These reports provided some of
the earliest evidence for a “gum–gut” axis in IBD and highlighted
gaps in knowledge related to the long-term impact of this chronic
periodontal inflammation over the life span.

Association Studies
Building on these early case reports, cross-sectional studies were
subsequently designed to search for positive associations among
IBD and periodontal afflicted individuals. Some of the earliest
studies on these gum–gut associations focused on the gingiva of
children. A later study specifically assessed gingival
inflammation in children and adolescents (aged 4–18 years
old) (85). Interestingly, this report focused on a remission
cohort of patients receiving treatment with immune-
modulating medications (i.e., anti-TNF; others). Even though
the matched healthy controls and IBD subjects displayed similar
oral health habits, IBD patients self-reported a significantly
higher incidence of bleeding gums when brushing and had
higher gingival inflammation scores upon clinical examination.
Based on the Community Periodontal Index of Treatment Needs
(CPITN) index, none of the IBD patients were determined to
have healthy periodontal tissues (0/55 subjects), and about 2/3
had a high need for periodontal treatment (scores >1). This
highlights that the use of clinical indices of periodontal disease
severity can better define the strength of the gum–gut axis.

Studies like these presented substantial support for a gum–gut
axis in which gingival inflammation was a primary manifestation
of IBD, even in children. Ultimately, longitudinal studies will be
required to truly understand the impact of early gum
inflammation on the gut in the long-term. Because such
prospective cohort studies are yet to be conducted, most
association studies have focused on adult cross-sectional
populations. However, few of these studies have documented
critical variables such as the length of time since IBD diagnosis or
FIGURE 3 | The History of the gum–gut axis in IBD. Over many centuries, the chronic inflammatory diseases of the gut and periodontium were noted but not
classified into defined disease entities until the late 1800s and early 1900s. First with case reports, then association studies, and finally clinical trials using biosampling
primarily of the oral cavity, the evidence for the bidirectional relationship became better understood. More studies are required, including longitudinal cohorts, to
understand the temporal associations and to further test causality.
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measures such as the severity over time, which does lead to some
difficulty in interpreting results. For example, a 1991 study
showed that IBD patients display a higher prevalence—but a
decreased severity—of periodontitis (86). A 2006 report assessed
periodontitis in patients diagnosed with IBD using a case-control
study design and again showed a trend toward lower severity, but
higher periodontal disease prevalence, in IBD patients (87).
These unexpected findings support the idea that that gingivitis
and IBD-induced gingivitis are unique and underscore that while
IBD-induced gingival inflammation is often documented to be
more clinically severe, this mechanism of inflammation may be
less likely to lead to the tissue destruction seen in periodontitis
(88, 89). This is at odds with what is known for the classical
dysbiotic-driven disease course and suggests more is left to learn
for both IBD and healthy individuals.

Other studies have also found consistent positive associations
between periodontitis and IBD compared to healthy controls,
using standard indices of periodontal inflammation in adults (88,
89). For example, a 2013 article detailed 113 patients with IBD
compared to healthy controls and found all clinical markers of
periodontitis such as bleeding on probing, loss of clinical
attachment, and pocket depth were each increased in both UC
and CD patients (90). Additional case-control studies have
demonstrated that IBD is positively associated with common
clinical indices of gingivitis and periodontitis and that moderate-
to-severe CD activity correlates with clinical indices of
periodontal disease (90). A recent meta-analysis has aggregated
these cohorts and summarized the results of six studies (total:
599 IBD patients and 448 control subjects), revealing significant
positive risk associations for periodontitis in CD (3.64; 95% CI:
2.33–5.67) and UC (5.37; 95% CI: 3.30–8.74) (91). Another
meta-analysis of 9 cross-sectional studies similarly found risk
ratios of 4.55 for having periodontitis in IBD patients (92). These
documented associations of periodontitis and IBD may be
established long before periodontitis manifests, and when
considering the mechanisms that drive the gum–gut axis, there
is an unmet need to understand how IBD-induced periodontal
manifestations are compared to classically understood concepts
in IBD, including tissue barrier, inflammation, and
microbiomial dysbiosis.
FACTORS THAT DRIVE THE GUM–GUT
AXIS

Gingival Barrier
The gingiva, which is comprised of oral epithelium, connective
tissue, blood and lymphatic vessels, smooth muscle, and
fibroblasts, forms around each tooth as it erupts. The overlying
oral epithelia fuse with the specialized, tooth-associated reduced
enamel epithelium, the latter which establishes the soft tissue
attachments to the non-shedding surfaces of the tooth via
hemidesmosomes. This developmental process transforms the
stratified squamous epithelia into both a sulcular epithelium and
tooth-associated junctional epithelia over 4 years to form the
gingival sulcus—and physical barrier—circumferentially around
Frontiers in Immunology | www.frontiersin.org 6
each primary and permanent tooth (59, 93, 94). It is at this
critical niche where a dynamic host structural, host immune, and
microbial relationship influences disease initiation and
progression. Despite its innate and acquired immune defense,
it remains incredibly susceptible to disease. These host tissues,
however, are also increasingly considered an immune organ,
performing functions necessary to withstand assaults from the
mechanical forces associated with mastication and from frequent
microbiomial shifts (95, 96). Even in health, more inflammatory
cells are detected at the gingival barrier compared to other oral
sites, suggesting this site may be able to readily attract immune
cells to mount a defense against a shifting subgingival
microbiome (97, 98).

This barrier site displays an underappreciated and poorly
understood epithelial and mesenchymal cell heterogeneity (99,
100) but has an incredible ability to tolerate the stress of the oral
environment, to regenerate after periodontal surgeries (94), and
has an emerging role in immune cell recruitment and “crosstalk”
(101, 102). This makes this niche one of the most dynamic in the
oral cavity. These vulnerable cells are held together by cell-cell
adhesions such as cadherins (CH1, CDH3), desmogleins (DSG1,
DSG2, DSG3), desmocollins (DSC1, DSC2, DSC3), and tight
junctions (TJP1, OCLN, CLDN1, CLDN7, CLDN10, CLDN12)
(103, 104). The expression of these adhesion genes is
heterogeneous by gingival epithelial cell type, which is of
interest considering recent work that suggests the fine-tuning
of immunity occurs from the structural cells present in various
body niches (38). Also of relevance is the impact of diet on the
host barriers in the oral cavity and intestine, which suggest
vitamins C primarily from fruits may play a potential
protective effect across the gastrointestinal tract (105–108).
There is much still to be learned about the impact of the
environment, diet, and niche-specific immune interactions in
periodontal diseases. A broader and deeper understanding of
these modifiers will help us understand how gingival
inflammation in IBD is related to gingivitis. However, studies
to date have only focused on host inflammation and oral
microbiome in IBD.

Systemic Inflammation
Some of the earliest studies that considered the mechanisms of
the gum–gut axis include reports in the late 1970s/1980s from
Lamster et al. and Engel et al. which suggested functional
changes to the immune system may play a common and
important role in patients with CD and periodontitis
pathogenesis (83, 84, 109). These studies provide a framework
on how this nascent field would approach studies of the gum–gut
axis in IBD: through profiling the inflammatory milieu, sampling
the oral microbiome, or both; however, this association is not
causality, even considering more sensitive methods of sampling
and profiling.

For convenience, saliva has often been collected as a surrogate
for localized tissue inflammation, though profiling of the gingival
crevicular fluid around the inflamed gingiva would be assumed
to provide a clearer signal. Despite this, salivary sampling in CD
patients found elevated effector cytokines (IL-1b, IL-6, IL-8, and
MCP-1; IL-1b and TNF-a) compared to healthy controls (110).
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IL-6, IL-1b, and TNF-a are elevated in salivary sampling
comparing active/exacerbated to inactive/remission CD
patients, whereas active UC patients demonstrated increased
IL-4, IL-10, and IL-21 (111, 112). Buccal mucosal sampling of
pediatric CD patients revealed higher chemokines (CXCL-8, -9,
-10) compared to healthy children and even adults with CD,
suggesting possibly unique signatures of oral manifestations of
pediatric IBD even when compared to adults (113). For one of
the few studies that sampled the site of proposed inflammation, a
study of gingival biopsies in adults with IBD and periodontitis
revealed no differences between UC and CD but did show that
across all sites, gingiva express IL-17A, IL-17F, IL-22, IL-25, IL-
33, IL-10, and IFN-g compared to the intestinal biopsies. These
findings suggest that there may be unique inflammatory profiles
in the oral niches compared to the intestine even at baseline,
which establishes a challenging framework for studies interested
in defining the local inflammatory profile of distant sites in the
same subject (114).

Microbial Dysbiosis
The first study to explore oral microbiomial shifts in IBD
patients was by Van Dyke et al. who tied periodontal disease
to oral dysbiosis. In this classic study, the oral microbiota was
characterized in the periodontal pockets of two groups: 1) those
with IBD and periodontitis and 2) those with IBD and only IBD-
associated oral manifestations of soft tissues (115). The
investigators found that the microbiota of IBD-associated
periodontal pockets was unique compared to patients with IBD
but no oral involvement., enriched with a unique microbiota of
mostly small, gram-negative rods that were thought to be
Wolinella (now: Campylobacter—a genus that is also associated
with periodontal and other gastrointestinal diseases) (116, 117).
Engel et al. focused on a case of severe, generalized periodontitis
in a recent diagnosis of CD and also found a host of well-known
periodontal pathogens in their patient, including Porphyromonas
gingivalis, Tannerella forsythia, and Campylobacter rectus (84).

Since gingival inflammation in IBD does not appear consistent
with plaque accumulation, an interesting question is whether the
systemic inflammation caused by IBD leads to changes of the
subgingival microbiome, thus leading to dysbiosis that exacerbates
oral inflammation. There is precedent for chronic inflammatory
diseases like diabetes, systemic lupus erythematosus, or rheumatoid
arthritis to influence the oral microbiome (118). Moreover, while
mechanistically unclear, disturbances of salivary and oral mucosal
microbiomes have been reported in two unique mouse models of
colitis (DSS and Citrobacter rodentium infection) and this has been
validated in humans (27, 119). The ability of IBD to induce
inflammation due to the recognition of shared epitopes across the
body has been suggested as a possible mechanism for extraintestinal
manifestations of IBD (120, 121). Arguably, extraintestinal
manifestations may be induced by local gut dysbiosis that causes
a broad adaptive immune response that leading to the recognition of
these epitopes in sites like the gingiva (121).

Building off of what had been thought of as dysbiosis in adult
IBD and periodontitis patients, a 2012 study assessed the oral
microbiome of the tongue and buccal mucosa in 114 healthy,
pediatric IBD subjects using 16S rRNA profiling (122). This
Frontiers in Immunology | www.frontiersin.org 7
study found less overall oral microbiome diversity in CD
compared to healthy controls—but not in UC. Tongue
microbiomes revealed increased Spirochetes, Bacteroides, and
Synergistes as well as decreased Firmicutes and Fusobacterium
in IBD subjects compared to healthy controls. Another pediatric
study sampled the subgingival microbial niche in 46 healthy and
35 CD patients (ages between 6 and 17 years old) before and after
8 weeks of pharmacotherapy (123). A majority of these cases
displayed resolution of intestinal inflammation, but in treatment
naïve CD patients, this study found increased Capnocytophaga,
Rothia, and Saccharibacteria in the gingiva of IBD patients
compared to healthy controls. When CD patients who had
received antibiotic therapy were compared to a CD treatment-
naïve cohort, the treatment cohort was shown to have
decreased periopathogenic genera such as Fusobacterium and
Porphyromonas, suggesting that some IBD treatments may have
on reducing inflammation through changes to the
oral microbiome.

Other IBD studies have found increased Bacteroides, Prevotella,
and Veillonella and decreased Proteobacteria, Neisseria, Gemella,
andHaemophiluswhen comparing the salivarymicrobiomes of IBD
patients to healthy controls (110). A sampling of the subgingival
microbiome in young and old patients have also shown unique oral
dysbiotic signatures in IBD patients with gingivitis (increased
Prevotella, Peptostreptococcus, Streptococcus species) or
periodontitis (increased Bacteroides, Campylobacter, and
Porphyromonas species) (124). A recent study of the salivary
microbiome of UC and CD found increased diversity and
enrichment of Streptococcus and Enterobacteria in UC and
Veillonella in CD when either was compared to healthy controls
(125). This group was able to identify distinct “oral ecotypes” for UC
and CD; each was not defined by clinical characteristics or disease
severity (125). The “indicator species” of these ecotypes varied over
time but included Corynebacterium and Acinetobacter for UC and
Lactobacillus, Bifidobacterium, Scardovia, Streptococcus, and
Pseudomonas for CD. Ecotype 1 (CD) showed a specific
enrichment of Neisseria and Fusobacterium. Furthermore, a recent
study of the buccal mucosa in irritable bowel syndrome also
revealed a decrease in Bacteroides and Bacillus, suggesting that
gastrointestinal diseases other than IBD may influence the oral
microbiome (126). Based on these studies, it appears that between
pediatric and adult subjects, commonly increased taxa in untreated
CD appear to include Bacteroides, Campylobacter, Fusobacterium,
Porphyromonas, Prevotella, and Veillonella, which may provide
important targets to better understand this gum–gut axis in future
studies; however, the question of whether IBD-induced periodontal
manifestations follow the same dysbiotic-immune paradigm as
gingivitis and periodontitis remains unresolved.
DEFINING THE GUM–GUT AXIS

A Framework for the Understanding
the Gum–Gut Axis
The decreasing cost and increasing sensitivity of high throughput
assays to ask questions about host immunity across the life span
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make this an especially ripe time to understand the gum–gut axis
in IBD. There is still a great deal to learn, but we believe that
elucidating this axis may have important long-term ramifications
for improving the health of oral and gastrointestinal tissues and
decreasing disease incidence by guiding and training our host
immune systems for a more balanced immune response later
in life.

These immune-microbiomial concepts are not new. For
example, while preterm birth has been associated with
dysregulated neonatal immunity, immune system “priming” in
health is thought to occur through the birth canal from exposure
to Escherichia and Enterococcus genera, as well as obligate/
facultative anaerobes, including members of the Firmicutes and
Bacteroidetes phyla and the Bifidobacterium genus. This narrow
window for establishing long-term health is important for other
mucosal tissues to help educate our mammalian immune
systems (127). While immune priming has been recently
shown to be important for the intestine through breastmilk
Frontiers in Immunology | www.frontiersin.org 8
(i.e., non-genetic inheritance of IgA), oral immune priming
throughout neonatal oral microbiomial exposures remains to
be fully explored (128). This will be even more important if early
disturbances to oral immune priming are found to negatively
affect gut immune priming (i.e., neonatal gum-to-gut influence;
Figure 4).

We hypothesize that the uniqueness of the gingiva—from
baseline immune profiles to the dynamic shifts of the
microbiome—provides the possibility of connection to the
gastrointestinal tract through the seeding of these products via
gingival crevicular fluid and then via saliva. While a nascent field,
the gum–gut axis also draws on a broad body of evidence. In the
following sections, we will outline the interconnectedness of oral
and gut microbiomial development and theorize how
disturbances to these systems may influence disease. We will
also emphasize saliva as a transmission vehicle for oral microbes
and inflammatory cells/meditators to the lower gastrointestinal
(Figure 4).
FIGURE 4 | Linking the gum–gut axis from birth to adulthood. Due to the uniqueness of each site, neonatal and adult oral and gut microbiomes do not resemble
one another. However, a common feature is that both sites and their distinct niches are established with a nascent microbiome that diversifies during development.
The oral microbiome stabilize at a later development timeframe when compared to the gut microbiome due to the shedding of primary teeth until about 12 years old
and the subsequent eruption of permanent teeth. This provides a narrower window of gut microbiome vulnerability compared to the oral cavity. Both oral and gut
microbiome diversification and stabilization are reportedly driven by environmental influences. The influence of the oral cavity to the lower gastrointestinal tract can
occur via saliva and also via vasculature (local inflammation seeding to distant sites) whereas the primary mode of gut to oral influence is via the mechanisms of local-
to-systemic inflammation such as the delivery of effector cytokines or activation of oral tissue-resident immune cells.
February 2021 | Volume 12 | Article 620124

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Byrd and Gulati Gum–Gut Axis in IBD
The Interconnectedness of Oral and Gut
Microbiomial Establishment
The human microbiome consists of a dynamic relationship
between the microbiota—namely, viruses, protozoa, fungi,
archaea, and bacteria—and their human niches; these niches
can be found on the skin, the reproductive organs, as well as the
interconnected gastrointestinal and upper aerodigestive tracts
(including the lungs, intestines, and oral cavity) (129, 130). We
are just now beginning to understand how this “forgotten organ”
is established and matures along with the development of its host
(131). The gut microbiome has been well-studied; however,
historically, the oral cavity was one of the first sites used in the
discovery of human microbes by Van Leeuwenhoek over three
centuries ago (132).

Currently, it is unknown exactly how many microbial species
exist in the pediatric or adult human oral cavity, but the Human
Oral Microbiome Database (http://homd.org/) lists over >150
genera, 700 species, and 1,300 strains, including an incredibly
diverse mycobiome of almost 100 fungi genera, and nearly 5,000
biosynthetic gene clusters which produce small molecules to
allow for microbial communication (133–136). The vast majority
of oral microbiota are commensals—but also include symbiotes
and pathogens—and as more strains are discovered, the more it
is recognized how microbial diversity and, importantly, their
interdependence is dynamic (137). Unsurprisingly, comparing
adult oral and gut microbiomes reveals that they are more
dissimilar than similar; however, there are some common taxa
between the two, including Streptococcus, Bacteroides, and
Prevotella. The relative abundance of Streptococcus and
Bacteroides differ significantly, though Prevotella was found to
be closely matched when considering a grouping of buccal
mucosa and hard palate versus a stool sample (~3% abundance
in both groups) (138, 139). Considering another grouping of the
tongue, salivary, and oropharyngeal samples resulted in 4× fold
relative detection of Prevotella compared to other oral and GI
microbiomes; consistently, however, there is substantial
heterogeneity of oral microbiomes when comparing niches
core species.

Relevant to the gum–gut axis is how the oral and gut
microbiomes develop and how these unique microbiomes
evolve as we age (140). It is now thought that oral and gut
colonization between living partners and between those partners’
children is the direct influence of both horizontal and vertical
transmission mechanisms, respectively (141–144). Oral
microbiomes cluster more clearly when age and niche are
considered; this is an important point to consider moving
forward when thinking about oral–gut association studies
(145). While the stable establishment of the host microbiomes
has been shown to influence the health of the individual later in
their life (146–148), whether this establishment occurs in utero
remains controversial (149, 150). Currently, it is thought that,
while in utero colonization may be possible, it is also restricted.
Recent 16S studies of meconium have detected only 18 total taxa
assumed to be from the gut, dominated by Micrococcus and
Lactobacillus (151). How this relates to future oral and gut
mucosal immunity remains to be discovered.
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Though ecologically distinct and with their characteristic
species, the oral and gut microbiomes both become more
diverse after birth; however, the gut microbiome stabilizes
earlier than the oral microbiome. This is likely due to the
longer period of growth, development, and tooth eruption in
the oral cavity in the first two decades of life (152, 153). This
trend also follows for the intestinal immune system compared to
the oral cavity (154). When considering the gum–gut axis, we do
not currently know if and when “perturbation windows” to
either microbiome may more effectively compromise the health
of the oral and the intestinal microenvironment (Figure 4).

The establishment of stable oral microbiomes may also be
critical for overall health in children; for example, Bifidobacteria
are known to be an important component of a healthy gut
microbiome—especially during lactation and breastfeeding—and
have been shown to influence immune responses in the gut (155).
Interestingly, recent work has shown that Bifidobacteria may
predominantly seed the gut via neonatal oral fluid (156, 157).
Another important question is how breastfeeding, which is filtered
through themouth, may simultaneously influence the development
of both oral and gut microbiomes. For example, the neonatal gut
virome has been shown to develop sequentially through
breastfeeding (158), and it is known that the oral cavity can host
several unique viromes that likely benefit from this mode of
neonatal feeding (159).

Oral Microbiomial Development: Oral
Mucosa, Subgingiva, and Saliva
To connect the gum to the gut, the goal of this section is to
establish a logical link between predentate mucosal microbiomes,
the subsequent emergence of teeth to establish the first
subgingival microbiomes, and then to connect this site to the
lower gastrointestinal tract through the oral biofluids around the
tooth (via gingival crevicular fluid) and then the whole oral cavity
(via saliva). We hypothesize that chronic disruption of the oral
immune repertoire sets up a gum–gut axis whereby the gingival
microbiota shift towards dysbiosis, establishing a positive
feedback loop for a chronic lesion of effector immune cells that
can travel and occasionally survive the journey in saliva to the
rest of the body, including the lower gastrointestinal tract
(Figure 4).

While the oral microbiome is often referred to as an
individual entity, it is important to emphasize that there are
several ways to think about the microbiomial niches within the
oral cavity. For example, it is known that there is a 1)
biogeographical (i.e., spatial) diversity of species within
polymicrobial communities (160), 2) biofluidic diversity
comparing salivary to the gingival crevicular fluid, 3) niche-by-
niche diversity between oral mucosal sites (161), and even 4)
anteroposterior diversity proposed to be caused by retrograde
salivary flow during swallowing (162). Despite this vast
heterogeneity, most single niches only contain about 5% of the
total known species (137). Some species are common to multiple
sites, each with a preference for various “landscape ecologies” of
the oral cavity that support this niche heterogeneity over time
(163). Recent work considering the site-specificity of adult oral
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microbiomes has documented these unique species for the dorsal
tongue mucosa, gingiva, and the enamel surfaces of teeth (161).

There is also the question of temporal heterogeneity. Our oral
and gut microbiomes continually change throughout our life, but
even the most primitive microbiomes in neonates are now thought
to play an active role in our oral and gut development (164). While
host genetics may contribute to microbiomial development in
a niche, a recent twin study of oral microbiomial variation
of the supragingival niche over 12 months suggests that
environmental exposure may be the primary influence on
microbes found in each niche (165). This has also been shown
for salivary microbiomes in a cohort of children between 2 days
and 5 years old (166). The development of microbiomes in the oral
cavity is highly unique compared to the rest of the body; this is
because, in children and adolescence, these microbiomes are often
defined by the dentition “state”. In neonates, this is often staged as
a mouth with no teeth present (neonatal/predentate mucosa);
toddlers display primary dentition; children display a mixed
dentition, and teenagers display a permanent dentition with
only adult teeth (Figure 4).

Temporally, predentate neonates display the most
rudimentary oral mucosal microbiomes, but even at this
timepoint, 50 genera have been identified, the majority of
which appear to be facultative anaerobes and anaerobes (167).
Primary colonizers (0–3 months old) include Lactobacillus,
Fusobacterium, Staphylococcus, Streptococcus, and Veillonella;
secondary colonizers include Gemella, Granulicatella,
Haemophilus, and Rothia. Neonatal microbiomes also appear
to vary at the species-level with only ~30 “core species” identified
(167). At 3 months old, which is still before the first teeth
erupt for most infants, predominant oral microbiomial phyla
include Saccharibacteria (formerly TM7), Fusobacteria, and
Actinobacteria—but not in all children, again supporting the
importance of environmental influence on microbiome
development (168). Oral mucosal microbiomes have been
shown to increase in diversity and richness along with the
developmental progression of predentate to permanent (145).
It has been reported that the neonatal oral mucosa displays a
high microbiomial diversity but low richness (169). Predentate
microbiomes are populated with Bacteroides, Firmicutes,
Eikenella, Eubacterium, Gemella, Granulicatella, Oribacterium,
Proteobacteria, Selenomonas, Streptococcus, and Veillonella.

It is on the foundation of this predentate mucosal
microbiome that the subgingival microbiome is established,
and there is a correlation between maternal and neonatal
predentate core species. This is critical and sensitive. When
mothers who were also smokers were studied (passive maternal
smoking), an increase in periodontal pathogens such as
Campylobacter and Fusobacterium were uniquely noted in the
predentate microbiomes of their offspring. These are important
to emphasize because they are also known IBD pathobionts, and
a recent multicenter study found that passive maternal smoking
had a dose-dependent association with the development of
pediatric IBD (170). Additionally, maternal smoking habits in
the perinatal period have been associated with developing IBD in
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their offspring (odds ratios of 5.32 for CD; 3.02 for UC) when
matched to unexposed controls, and we hypothesize that these
oral microbial alterations may play an active role in the
exacerbation or acceleration of IBD.

Once the predentate microbiome is established, the subgingival
microbiome forms as teeth erupt through that oral mucosa to form
the subgingival crevice. This niche is unique in the mouth, protecting
from oxygen and low redox potential for Gram-negative anaerobes
(96, 171). Studies focused solely on the gingival pocket have detected
nearly 500 different species in the subgingival biofilms attached to the
tooth and with few species dominating in adults (172). This unique
anatomy results in a complex microbiota even in children, with
only about 1/3 of genera shared with the predentate microbiomes
(167). In this niche, several taxa are common to primary, mixed, and
permanent dentition states, including Actinomyces, Capnocytophaga,
Campylobacter, Corynebacterium, Fusobacterium, Gemella,
Granulicatella, Haemophilus. Kingella, Porphyromonas, Prevotella,
Streptococcus, Terrahaemophilus, and Veillonella (167).

As permanent teeth erupt, the richness of species increases as
does oral microbiomial “personalization”. This is the site of
microbiomial dysbiosis in gingivitis that can occur in children
and adults. In both classical and IBD-associated gingivitis, the
gingival crevicular fluid flows outward through the junctional
epithelial attachment into the subgingival crevice and eventually
the saliva. It is thought that this crevicular fluid may also serve as
nutrition for the oral microbiome. As more species colonize the
subgingival space, gingival crevicular flow rates and pH have
been shown to increase (173, 174). A few recent studies on adults
have assessed this fluid for its microbiome; however, because it
flows into saliva and likely contains free-floating microbes from
the developing subgingival biofilms, its signature appears more
as an intermediate between these two niches (175–177).

Changes to the salivary microbiome during oral development
have also been examined (167). Saliva is not solely a microbiome
source but also contains factors that support commensal
microbiomial development and maintenance (178). Like other
oral microbiomes, the salivary microbiomial composition is also
defined by ecological succession (168). The salivary microbiome has
very few “core species” shared between these developmental stages
(167); however, the concept of “early colonizers” has been explored
and suggests that Streptococcus and Veillonella appear first, followed
by Neisseria. What appears most consistent is that salivary
microbiomes are closely aligned with the dentition state; thus, the
salivary microbiome clusters with the predentate microbiome in
neonates and clusters more with the primary teeth stage
microbiomes in toddlers, etc. This results in salivary microbiomes
that increase in diversity as primary teeth first erupt, are shed, and
permanent teeth again erupt. For example, neonatal salivary taxa are
dominated by Streptococcus, Veillonella, and Gemella—much like
the neonatal microbiome. When the primary dentition erupts,
similarities to the maternal oral microbiomes become less
apparent, which accompanies the detection of Actinomyces,
Corynebacterium, Granulicatella, Fusobacterium, Haemophilus,
Neisseria, and Rothia (167). This reflects the ability of saliva to be
sampled as a gestalt—but not as a specific— readout.
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Linking the Oral Microenvironment
to the Gut Through Saliva
Currently, there are several proposed mechanisms for how
periodontal diseases may influence distant sites like the
intestines. These links include dissemination of periopathogens
and inflammatory mediators like TNF, IL-1b, and IL-6
systemically through the bloodstream (179) Though many
studies have suggested a potential for chronic periodontal
inflammation and local oral dysbiosis to influence other body
sites, few studies have determined causality (i.e., whether this is
occurring via the distant effects of inflammation from chronic
gingivitis/periodontitis or transmission of oral pathogens to
distant sites). The latter considers a role for translocation of
the subgingival microbiome; however, one group recently
examined the gut microbiomes of patients with health,
gingivitis, and periodontitis. They found that chronic oral
inflammation was associated with less alpha-diversity in the
gut microbiome, and though some oral taxa could be detected
from the stool of each patient cohort, no clear trends for oral taxa
enrichment emerged in this pilot—thus pointing to the possible
influence of gut microbiome composition through oral
inflammation (180).

From the recent literature, the gum–gut axis appears to be
inherently linked through saliva, which can deliver enzymes,
effector cytokines, free-floating and keratinocyte-bound bacteria,
and subpopulations of viable inflammatory cells such as
neutrophils, lymphocytes, and macrophages to distant sites.
Saliva also contains mucus (comprised of water, lipids, and
proteins such as mucins) which can protect these contents
from the acidic contents of the stomach for survival along the
gastrointestinal tract (181). About ~1 to 1.5 L of saliva is
produced daily per person, and this contains millions of
bacteria that are traditionally not known to colonize distant
intestinal sites in health (182). While there is an interest in
whether and how dysbiotic subgingival microbiomes could lead
to the subsequent release of pro-inflammatory cytokines, this is a
burgeoning field of study. Recent studies in mice showed a role
for known periopathogen Porphyromonas gingivalis in
perpetuating systemic inflammation after oral administration
in mice; this led to endotoxemia, altered the gut microbiome,
decreased insulin resistance, and altered tight junction
expression in the ileum (183). Other studies have linked
Atopobium parvulum, Campylobacter concisus, Fusobacterium
nucleatum, Fusobacterium varium, and Staphylococcus aureus to
gastrointestinal disease, but whether these species are colonizing
the intestine or indirectly eliciting chronic immune responses
remains to be seen (184).

Several interesting studies have put forth the first evidence of
transmission and colonization of oral microbes to the upper
aerodigestive tract and also to the intestine (gum to gut
influence). In health, there is evidence for oral microbiomial
contribution to the oropharyngeal, esophagus, and gastric
microbiomes (185). For example, an early study of the distal
esophagus found 13 genera common to all samples, including
Streptococcus, Prevotella, and Veillonella; most species-level
OTUs were determined to be similar or identical to those of
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the oral cavity (186). This distant transmission is not specific to
the GI tract as colonization and succession of the lung
microbiome are associated with cystic fibrosis progression in
infants and children (187). This work showed colonization of the
lungs by oral microbes was possible even in 2-year-old children,
with a significant abundance of Streptococcus, Prevotella, and
Veillonella—identical to those found in the distal esophagus.
Periopathogen taxa such as Fusobacterium and Porphyromonas
were detected as well in some progressing groups, supporting the
potential role for known periopathogens transmission in disease
progression in a distant site.

This transmission phenomenon is also observed in the lower
gastrointestinal tract (188, 189). Given these findings, what was
once thought to be a rare event—the colonizing of distant
microbiomial niches by oral microbes—appears to be more
commonplace than once appreciated. For example, recent
work assessing both salivary and stool samples primarily from
healthy adults estimated that >10% of oral species may transmit
via an oral-fecal route throughout the entire GI tract (190). This
demonstrates a previously underappreciated niche-to-niche
colonization pipeline. Other studies have reported many oral
microbes found in the intestinal tissues of adult patients suffering
from IBD, such as Aggregatibacter, Campylobacter,
Enterobacteria, Fusobacterium, Gemella, Neisseria, Pasteurella,
Peptostreptococcus, and Streptococcus. Many of these are
associated with gingivitis (184). These findings are supported
by well-designed studies in mice that have demonstrated
competition for the GI niche by oral and traditional gut
microbes (191), as well as other recent work that has
demonstrated the establishment of oral microbes in the
gastrointestinal tracts of patients afflicted with colorectal
cancers and adult IBD (185, 188, 192, 193). A recent study of
IBD found colon biopsies were abundantly colonized by
periopathogens such as Fusobacterium, Peptostreptococcus,
Staphylococcus, and Streptococcus (194).

Mechanistic studies using gnotobiotic mice have also shown a
role for resident Klebsiella spp. in the saliva of IBD patients to
colonize an already dysbiotic colon, leading to a significant
inflammatory response through Type 1 T helper (TH1) cells in
the local gut microenvironment (28). Whether Klebsiella spp. are
truly a pathogenic link between the oral cavity and the gut or
merely a demonstration of pathogenic colonization and
immune-mediated exacerbation of IBD in mice remains to be
elucidated. However, there is an exciting future ahead, especially
when considering a recent study that utilized a ligature model in
mice to induce periodontal inflammation. This led to subgingival
dysbiosis with increased Bacteroides, Enterobacteriaceae, and
Staphylococcus. Enterobacteriaceae were also found in the gut
microbiome, again suggesting that oral microbes were able to
colonize the intestine, and also exacerbate, established colitis.
This study found that this was dived via oral niche primed Th17
cells with tropism for the gut (29). While these studies have not
yet answered how these systems are explicitly linked, there is
increasingly strong evidence for oral dysbiosis and localized
gingival/periodontal inflammation eliciting and exacerbating
and immune responses in the gut. While much of this review
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has focused on the oral gingival niche as one half of the axis (gut
to gut inflammation and subsequent gut to gum influence), this
reflects the state of the field. The local gut niche in IBD with and
without chronic oral inflammation is a nascent field with many
more mechanistic and clinical studies needed.
DISCUSSION

There remain several challenges to formally establishing our
proposed gum–gut axis. In particular, the heterogeneity of IBD
and periodontal disease—as well as the temporal nature of each
to exhibiting periods of activation and remission—make this
association difficult to establish until better subtyping and disease
activity for each disease can be more clearly ascribed (Figure 5).
It remains critical that we continue to learn more about the
pathogenesis of both oral and GI diseases so that we can also
better understand how they influence each other. This will allow
for the development of future tools to improve both our oral and
gastrointestinal health throughout life. Additionally, while oral
manifestations are not often the primary concern for treatment
in many systemic diseases like IBD, their oral manifestations may
provide a “window to the rest of the body”, serving as an easily
accessible site to aid in the diagnosis or to serve as a functional
readout of disease activity (195). This could include frequent oral
sampling through treatment naïve IBD patients to predict disease
activity or to determine the efficacy of IBD biologics/biosimilars
Frontiers in Immunology | www.frontiersin.org 12
chairside before and during the critical first months after
deciding on a particular IBD pharmacotherapeutic.

In parallel with a non-invasive sampling of the oral cavity in
longitudinal studies, it is clear that model organisms such as mice
are proving vital to provide supporting evidence for the gum–gut
axis. This type of work is supported by a recent resource of oral
microbiomial development that has cataloged predentate,
eruption, and post-eruption stages in mice. This provides a
framework for studies about niche establishment, dysbiosis,
and the long-term consequences and resistance to gum–gut
disease. Additionally, ileitis models (such as SAMP1/YitFc
mice) and DSS models of colitis are reported to show oral
mucosal inflammation and inflammatory bone loss that
mimics periodontitis in mice and could be useful for these
investigations (196, 197). While it is interesting to postulate
about which oral taxa could take residence and cause, reactivate,
or exacerbate IBD, further studies are required to understand
how gut microbial growth rates, antibiotic resistance (i.e.,
resistomes), microbial gene expression, and metabolomics all
come together to influence IBD development and perpetuate IBD
(198–201).

While much work remains to be done, there is an exciting
future for collaborative efforts between GI and oral health care
providers to answer these questions. This will require
biosampling both oral and intestinal sites to correlate dysbiosis
and inflammatory changes across niches. It is encouraging to see
the progress of the NIHHumanMicrobiome Project over the last
FIGURE 5 | Future directions to better elucidate the gum–gut axis. Due to the uniquely active and remittent inflammatory states of periodontal disease and
inflammatory bowel disease, there is an exciting future for collaborative efforts between GI and oral health care providers to answer these questions. This will require
biosampling both oral and intestinal sites to correlate dysbiosis and inflammatory changes across niches and across time, better modeling using ex vivo models, and
better phenotyping of both diseases. In the future, predictive modeling and precision medical approaches are possible to treat both oral and GI diseases.
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decade that originally collected nasal, oral, gut, skin, and vaginal
microbiomes from a healthy cohort and provided valuable
resources such as the Human Microbiome Project Data
Coordination Center (202). As we begin to understand both
the window of stable microbiomial establishment for the oral and
gut microbiomes, we may be able to intervene to impact the
health of these two sites for improved health later in life. For
example, there are already several active clinical trials related
to reestablishing a healthy neonatal gut microbiome (131).
To justify the clinical implementation of this type of
intervention will require in vitro 3D modeling (203), pre-
clinical animal studies of host-microbiome interactions (204–
207), interdisciplinary clinical research projects focused on
longitudinal biobanking (208) for multiomics-informed
approaches (199, 209, 210), biomarker discovery and
validation, and improved risk modeling (211, 212). Ultimately,
such work will lead to personalized therapeutics to target the
gum–gut axis (213), sensitive and specific tools for early
Frontiers in Immunology | www.frontiersin.org 13
diagnosis of diseases in each site, and the exciting possibility of
new biomarkers for risk stratifying a spectrum of oral and
gastrointestinal diseases (214, 215).
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